INTERNATIONAL PRIME SCHOOL
 Worksheet; Class: IX Subject: Maths-B

1. For each of the following, give your answer in standard form.
a) A male African elephant can weigh as heavy as 7000 kilograms.

Express this weigh in grams.
b) The average lifespan of a certain molecule is 0.5 nanoseconds.

Express this time in seconds.
c) A steam power plant is Singapore has a capacity of 250 megawatts.

Express this capacity in watts.
2. Light travels at a speed of $300000000 \mathrm{~m} / \mathrm{s}$.
a) Express this speed in standard form.
b) Given that the mean distance from the sun to Jupiter is 778.5 million kilometres, find the time taken, in minutes and seconds, for light travel from the sun to Jupiter.
3. Given that the coordinates of the points P and Q are $(-2,6)$ and $(9,3)$ respectively, find
a) the coordinates of the point R that lies on y -axis such that $P R=Q R$,
b) the coordinates of the point S that lies on x -axis such that $P S=Q S$
4. a) show that the points $\mathrm{A}(-1,2), \mathrm{B}(5,2)$ and $\mathrm{C}(2,5)$ are the vertices of an isosceles triangle.
b) Find the area of $\triangle \mathrm{ABC}$.
5. The lines $2 x-5=k y$ and $(k+1) x=6 y-3$ have the same gradient. Find the possible values of k.
6. (i) Find the equation of the straight line which passes through the point $(-3,5)$ and with gradient $-\frac{2}{3}$.
(ii) Given that the line in (i) also passes through the point $(p, 3)$, find the value of p.
7. An overhead bridge has a height of 5.5 m . The angles of elevation of the top of the bridge from two points P and Q on the ground are x° and 23° respectively.

Given that the distance between P and Q is 5.1 m , find the value of x.
8. From the top of a cliff 88 m high, the angles of depression of two boats due west of it are 23° and 18° respectively. Calculate the distance between the two boats.
9. Write down the equation of the straight line which passes through the origin and with 2 gradients.
10.a) Express in the form $(x+a)^{2}+b$
i) $x^{2}-5 x$
ii) Solve the equation: $\frac{5 x}{x+4}=3 x+1$
b) The differences between two positive numbers $\frac{12}{x+1}$ and $\frac{12}{x}$ is 1 .
11. i) Form an equation in x and show that it reduces to $x^{2}+x-12=0$
ii) Solve the equation $x^{2}+x-12=0$
iii) Hence, find the two numbers.
12. a) i) Express $x^{2}-8 x+5$ in the form $(x-p)^{2}+q$.
ii) Hence, sketch the graph of $y=x^{2}-8 x+5$.
iii) Write down the coordinates of the minimum point of the graph.
iv) State the equation of the line of symmetry of the graph.
b) Solve $\frac{5}{x-2}=2-\frac{4}{(x-2)^{2}}$
13. a) i) Solve the inequality $8-x>3$ and illustrate the solution on a number line.
ii) If x is a prime number, write down the largest possible value of x that satisfy the inequality.
iii) Write down the positive integer values of x that satisfy the inequality.
b) Given that x is a prime number, find the values of x for which $\frac{1}{2} x-4>\frac{1}{3} x$ and $\frac{1}{6} x+1<\frac{1}{8} x+3$.
14. a) In the figure, SQR is a straight line, $\angle P Q R=90^{\circ}, \mathrm{PQ}=8 \mathrm{~cm}$ and $\mathrm{QR}=15 \mathrm{~cm}$

Find the value of each of the following .
i) $\sin \angle P R S$
ii) $\cos \angle S R P$
iii) $\tan \angle P R Q$
b) In $\triangle P Q R, \angle P=72^{\circ}, q=152 \mathrm{~cm}$ and $r=125 \mathrm{~cm} . A C=15 \mathrm{~cm}$. Find the area of $\triangle P Q R$.
c) In the diagram, ABCDE is a pentagon in which BC is parallel to AE .
$\angle A B C=\angle A D C=\angle A E D=90^{\circ}, \angle D A E=26^{\circ}, \mathrm{DE}=10 \mathrm{~cm}$ and $\mathrm{CD}=16 \mathrm{~cm}$.
Calculate, giving your answers to 3 significant figures.

i)the length, in cm , of AD ,
ii) the size, in degrees, of $\angle C A D$, iii) the length, in cm , of AB ,
15. a) In the figure, A, C and D are three points along a straight line road where
$\angle A B C=62^{\circ}, \angle A C B=68^{\circ}, \mathrm{BC}=6 \mathrm{~m}$ and $\mathrm{CD}=7.5 \mathrm{~m}$.
Calculate, giving your answers to 3 significant figures.

Find
i) the distance AC
ii) the area of the region enclosed by AB, BD and DA .
16. b) In the figure, $\angle P Q R=\angle P S R=90^{\circ}, \angle Q P R=27.6^{\circ}, \angle P T S=64.2^{\circ}, P R=$ 5.7 cm , $P S=3.2 \mathrm{~cm}$ and $P T=2.7 \mathrm{~cm}$. Give your answers to 3 significant figures.

Find i) the length of QR
ii) $\angle S P R$
iii) $\angle P S T$
17. a) 3. In $\triangle A B C, B C=4 \mathrm{~cm} . M$ is the midpoint of BC such that $A M=4 \mathrm{~cm}$ and $\angle A M B=120^{\circ}$.

Find i) the length of AC
ii) the length of $A B$
iii) $\angle A C B$
b) The figure shows the cross section of the roof of an old cottage. It is given that $A P=5 m, P C=8 m, \angle A P C=60^{\circ}$ and $\angle A B C=45^{\circ}$.

Find i) the length of $A B$, ii) the length of $A C$
18. a) Find the radius of the following circles.

Perimeter of minor sector $=77.91 \mathrm{~cm}$
b) In the figure, O is the center of a circle of radius 7.5 cm . The points A and B lie on the circumference of the circle and OBP is a straight line.

Given that $\mathrm{PA}=14 \mathrm{~cm}$ and OA is perpendicular to AP , find
i) $\angle P O A$
ii) the perimeter of the shaded region PBA.

INTERNATIONAL PRIME SCHOOL
 Worksheet; Class: IX Subject: Pure Mathematics

1. a) Solve the following equation correct to 3 significant figures.
i) $5^{2 x}+100=5^{x+2} \quad$ ii) $\log _{3} x+\log _{3}(2 x-1)=2$
b) Solve the following simultaneous equation correct to 3 significant figures. $3^{x}-4^{y}=5, \quad 3^{x+1}+4^{y}=23$
2. Solve the following equations:
i) $2^{2 x-1}=16+2^{x+1}$
ii) $\log _{2}(2 x+y)=1, \log _{8}\left(4 x^{2}-y^{2}\right)=1 \frac{1}{3}$
3. Given that $y=a x^{b}+7$, that $y=79$ when $x=2$ and that $y=16$ when $x=4$, calculate the numerical values of a and b.
4. The fourth term of a G.P. is 9 and the ninth term is 2187. Find the first 4 terms of the G.P.
5. The first term of a G.P is $\sqrt{3}$ and the fourth term is 9 . Find the sum of the first18 terms of the G.P., giving your answer correct to 4 significant figures. 6. In a G.P the fifth term exceeds the fourth term by 10 and the fourth term exceeds the third term by 15 . Find the sum of the first 6 terms of the G.P. 7. The second term of a G.P. is 2 and its sum to infinity is 9 . Find the sum of the first 4 terms of the two possible geometric progressions.
8 . Find the sum to the infinity of the series: $81-27+9-3+\ldots$.
6. a) Simplify: $\sqrt{2}+1+\frac{1}{1+\sqrt{2}}$
b) Express in the form of $a+b \sqrt{c}$.
i) $\frac{\sqrt{7}+2}{\sqrt{7}-2}$
ii) Rationalize the denominators, giving your answer in the simplest form possible.

$$
\frac{\sqrt{14}}{\sqrt{7}+\sqrt{2}}
$$

c) Find the value of: $\frac{\sqrt{50}+\sqrt{18}}{\sqrt{32}-\sqrt{8}}$
10. a) i) Evaluate: $512^{-\frac{4}{3}}$
b) Solve the simultaneous equations. $5^{2 x+y}=625, \quad 2^{4 x-2 y}=\frac{1}{16}$
11. a) Simplify: i) $\log _{16} \frac{1}{4}$ ii) $2 \log _{3} 5-\log _{3} 10+3 \log _{3} 4$
b) Evaluate without using calculators:

$$
\log _{10} \sqrt{175}-\log _{10} \sqrt{91}+\log _{10} \sqrt{52}
$$

c) If $2 \log _{3} y-3 \log _{3} x-\log _{3} b+\log _{3} a=3$, express y in terms of a, b and x.
12. a) Find the $25^{\text {th }}$ term of the following arithmetic progressions: $3,6,9,12,15, \ldots$
b) Which term of the A.P. $6,13,20,27, \ldots$ is 111 ?
c) Given that the third and sixth terms of an A.P are 13 and 22 respectively, find the sum of the first n terms in terms of n.
d) For the A.P. $3, \frac{3}{2}, 1, \frac{3}{4}, \ldots$ find in terms of n :
i) the sum of the first 10 terms ii) the sum of the first n terms.
13. a) Expand: i) $\left(2+\frac{x}{2}\right)^{6}$
ii) Find in ascending powers of x, the expansion of $(1-2 x)^{5}$
b) Write down and simplify, in ascending powers of x, the first three terms of the expansion of
i) $\left(1+\frac{x}{2}\right)^{6}$,
ii) $(3-2 x)^{6}$
iii) Hence, or otherwise, obtain the coefficient of x^{2} in the expansion of

$$
\left(3-\frac{x}{2}-x^{2}\right)^{6}
$$

14. a) Find all the angles between 0° and 360° $\sin 2 x=-\cos 60^{\circ}$
b) Given that $\tan A=-\frac{3}{4}, \tan B=2$ and both A and B are between 90° and 270°, find the value of each of the following without using a calculator:
i) $\sin A \quad$ ii) $\cos A \quad$ iii) $\sin B \quad$ iv) $\cos B$
c) Solve the equation: $5 \sin x \cos x=2 \cos x$ for $0^{\circ} \leq x \leq 360^{\circ}$
15. a) Use the compound angle formulae to find the following in surd form: i) $\cos 105^{\circ}$ ii) $\tan 255^{\circ}$
b) Given that $\sin A=\frac{3}{5}$ and $\cos B=-\frac{4}{5}$ and that A and B are obtuse, find, without using tables or calculators, the value of
i) $\sin (A-B)$
ii) $\tan (A+B)$

NAME OF THE EXPERIMENT
Work sheet page no
Class-1X park sheet part no
गे भौना निज्: $(900-1,20)$ कालद

 * डिम्येखくら

21 Translate into English

Class- IX
जमिंड लिख: $(220-2 b 0)$ बल

* रेते, (कान चुललल, र्रामे यी खर्दाश

 नखिए नावाय

* Gयगयाय, रक्नन कूत्रे दणपजिए जहतु नो बना
* की की विएक्य से चाउर्य
* तरु रकायाव हूभिदा की

81 Translate the sentences into Bengali
a) I had never been to this big town before
b) The Wednesday started with a glorious sunrise.
c) Asking question is not always easier than answering them.
d) Having failed in the attempt, he refused to sing again.
e) If we had taken your advice, we would be rich by now.

